- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Koziel, Alexandra C. (3)
-
Click, Sophia M. (1)
-
Dwyer, Kaelyn M. (1)
-
Endres, Emma J. (1)
-
Flores, Sebastian (1)
-
Goldfarb, Ralston B. (1)
-
Macdonald, Janet E. (1)
-
Macdonald, Janet. E. (1)
-
McBride, James R. (1)
-
Nuriye, Ahmed Y. (1)
-
Robinson, Evan H. (1)
-
Rosenthal, Sandra J. (1)
-
Torres, Ruben (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The incorporation of quantum dots in display technology has fueled a renewed interest in InP-based quantum dots, but difficulty controlling the Zn chemistry during shelling has stymied thick, even ZnSe shell growth. The characteristic uneven, lobed morphology of Zn-based shells is difficult to assess qualitatively and measure through traditional methods. Here, we present a methodological study utilizing quantitative morphological analysis of InP/ZnSe quantum dots to analyze the impact of key shelling parameters on InP core passivation and shell epitaxy. We compare conventional hand-drawn measurements with an open-source semi-automated protocol to showcase the improved precision and speed of this method. Additionally, we find that quantitative morphological assessment can discern morphological trends in morphologies that qualitative methods cannot. In conjunction with ensemble fluorescence measurements, we find that changes to shelling parameters that promote even shell growth often do so at the cost of core homogeneity. These results indicate that the chemistry of passivating the core and promoting shell growth must be balanced carefully to maximize brightness while maintaining emission color-purity.more » « less
-
Koziel, Alexandra C.; Goldfarb, Ralston B.; Endres, Emma J.; Macdonald, Janet E. (, Inorganic Chemistry)
-
Robinson, Evan H.; Dwyer, Kaelyn M.; Koziel, Alexandra C.; Nuriye, Ahmed Y.; Macdonald, Janet. E. (, Nanoscale)null (Ed.)This study demonstrates that a dialkyl ditelluride reagent can produce metastable and difficult-to-achieve metal telluride phases in nanocrystal syntheses. Using didodecyl ditelluride and without the need for phosphine precursors, nanocubes of the pseudo-cubic phase (Cu 1.5 Te) were synthesized at the moderate temperature of 135 °C. At the higher temperature of 155 °C, 2-D nanosheets of vulcanite (CuTe) resulted, a nanomaterial in a phase that has not been previously achieved through thermal decomposition methods. Materials were characterized with TEM, powder XRD and UV-Vis-NIR absorbance spectroscopy.more » « less
An official website of the United States government
